Friday, July 9, 2021

CHAPTER 5 : APPLICATION OF COMMON LOGARITHM

Application of Common Logarithm

Exercise 5.1

1.       Write the characteristics of the following logarithms.

(i)             log 6987       (ii) log 256987     (iii) log 0.000089                (iv) log 4.68

(v) log 0.7491             (vi) log 1               (vii) log 35.492                   (viii) log 36

(ix) log 0.00305          (x) log 1.965

Solution: (i) log 6987                                                                                 

                         Characteristics=4 – 1     

                                                        = 3         

(ii)                  log 256987  

          Characteristics = 6 – 1  

                                        = 5

(iii)                log 0.000089

  Characteristics = - (4 + 1)

                                        = - 5

(iv)               log 4.68

   Characteristics = 1 – 1

= 0

(v)               log 0.7491  

            Characteristics= - (0+1)

                                         = -1                                                       

(vi)                log 1

   Characteristics= 1 – 1

                                = 0

 

(vii)              log 35.492                                        

   Characteristics= 2 – 1                            

= 0                                                                 

(viii)              log 36

  Characteristics= 2 – 1

= 0

(ix)             log 0.00305                                                          

   Characteristics= - (2 + 1)                                       

= -3                                                                

(x)               log 1.965

   Characteristics= 1 – 1

                                   = 0 

2.         If log 2925 = 3.46612 then find the values of log 29.25, log 2.925, log 0.002925 and log 292500.

Solution: Given, log 2925 = 3.46612

        Log 29.25 = log 2925 × 10 -2

                           = - 2 + log 2925

                            = -2 + 3.46612

                            = 1.46612

        Log 2.925 = log 2925 × 10 -3

                           = -3 + 3.46612

                           = 0.46612

        Log 0.002925 = log 2925 × 10-6

                                   = -6 + 3.46612

                                   = -3.46612

                                  = 3̅.46612

        Log 292500 = log 2925 × 102

                               = 2 + 3.46612

                               = 5.46612

 

 3.        Find antilogarithm with the help of the table.

(i)               3.1465                             (ii) 1̅.8621                             (iii) 4̅.6663

(iv )  -2.7917                                (v) 2.5591

Solution: (i) Antilog 3.1465 = 0.14012 × 103+1

                                                        = 0.14012 × 104

                                                                                    = 1401.2

(ii)                            Antilog 1̅.8621 = 0.72795 × 10-1+1

= 0.72795

(iii)                          Antilog 4̅.6663 = 0.46377 × 10-4 +1

= 0.46377 × 10-3

= 0.00046377

(iv)                         Antilog -2.7917= Antilog ( - 2 – 0.7917)

 = Antilog (– 3 + 1 – 0.7917)

= Antilog (- 3 + 0.2083)

= Antilog ( 3̅.2083)

=0.16155 × 10-3+1

= 0.16155 × 10-2

= 0.0016155

(v)                           Antilog 2.5591 = 0.36232 × 102+1

= 0.36232 × 103

=362.32

4. Given that log2 = 0.30103, log3 = 0.47712 and log5 = 0.69897

(i)                  Log 0.002                     (ii) log 25                              (iii) log 7.2

(iv ) log 300                                 (v) log 0.15

Solution  Given that log2 = 0.30103, log3 = 0.47712 and log5 = 0.69897

(i)                  Log 0.002 = log 2 × 10-3

= -3 + log 2

= -3 + 0.30103

= 3̅.30103

(ii)                        Log 25 = log 52

= 2 log 5

= 2 × 0.69897

= 1.39794

(iii)                     Log 7.2 = log 72 × 10-1

= -1 + log 72

= -1 + log (23 × 32)

= -1 + log 2+ log 32

= -1 + 3 log 2 + 2 log 3

= -1 + 3 × 0.30103 + 2 × 0.47712

= -1 + 0.90309 + 0.95424

= -1 + 1.85733

= -1 + 1 + 0.85733

= 0.85733

(iv)                     Log 300 = log 3 × 102

= 2 + log 3

= 2 + 0.47712

= 2.47712

(v)                        Log 0.15 = log 15 × 10-2

= -2 + log (3 × 5)

= -2 + log 3 + log 5

= -2 + 0.47712 + 0.69897

= -2 + 1.17609

= -2 + 1 + 0.17609

= -1 + 0.17609

= 1̅.17609

5.       Find the number of digits of the following numbers.

(i)                  220                          (ii) 225                              (iii) 317                             (iv) 515

(v )         620                          (vi) 713                            (vii) 2200 × 310

(viii)       312 × 28                  (ix) 2100 × 618

Solution: (i)                                let x = 220

                                    Log x = log 220

                                                = 20 log 2

                                                = 20 × 0.30103

                                                = 6.0206

                Here, characteristics = 6

                No. of digit in the number = 6 + 1= 7

(ii)                Let  x = 225

    Log x = log 225

                = 25 log 2

                = 25 × 0.30103

                = 7.52575

Characteristics = 7

Hence, the number of digit = 7 + 1 = 8

(iii)               Let x = 317

Log x = log 317

                = 17 log 3

                = 17 × 0.47712

                = 8.11104

Characteristics = 8

Hence, the number of digit = 8 + 1  = 9

(iv)              Let x = 515

Log x = log 515

                = 15 log 5

                = 15 × 0.69897

                = 10.48455

Characteristics = 10

Hence, number of digit = 10 + 1 = 11

(v)                Let x = 620

     Log x = log 620

                = 20 log 6

                = 20 [log 2 + log 3]

                = 20 [0.30103 + 0.47712]

                = 20 × 0.77815

                = 15.563

Characteristics = 15

Hence, number of digit = 15 + 1 = 16

(vi)              Let x = 713

     Log x = log 713

                = 13 log 7

                = 13 × 0.8451

                = 10.9863

Characteristics = 10

Hence, number of digit = 10 + 1 = 11

(vii)             Let x = 2200 × 310

     Log x = log (2200 × 310)

                = log 2200 + log 310

                = 200 log 2 + 10 log 3

                = 200 × 0.30103 + 10 × 0.47712

                = 60.206 + 4.7712

                = 64.9772

Characteristics = 64

Hence, number of digit = 64 + 1 = 65

(viii)           Let x = 312  × 28

     Log x = log (312 × 28)

                = log 312 + log 28

                = 12 log 3 + 8 log 2

                = 12 × 0.47712 + 8 × 0.30103

                = 5.72544 + 2.40824

                = 8.13368

Characteristics = 8

Hence, number of digit = 8 + 1 = 9

(ix)              Let x = 2100

Log x = log 2100

                = 100 log 2

                = 100 × 0.30103

                = 30.103

Characteristics = 30

Hence, number of digit = 30 + 1 = 31

(x)                Let x = 618

Log x = log 618

                = 18 log 6

                = 18 log (2 × 3)

                = 18 [log 2 + log 3]

                = 18 [0.30103 + 0.47712]

                = 18 × 0.77815
                = 14.0067

Characteristics = 14
Hence, total digit number = 14 + 1= 15

 6.       How many zero’s are there between the decimal point and the first significant digit after decimal in the following numbers?

(i)                  2-64                                      (ii) (1/2)1000                         (iii) 3-6                    (iv) (1/3)100

(v ) (0.0016)20                     (vi) 3-7                                   (vii) (16.8)-12           (viii) 7-4

(ix) 3-21                                  (x) 2-10

Solution:     (i) Let x = 2-64

                        Log x = log 2-64

                                        = -64 log 2

                                        = - 64 × 0.30103

                                        = -19.26592

                                        = -20 + 1 – 0.26592

                                        = -20 + 0.73408

                                        = 2̅0̅.73408

Characteristics = 2̅0̅

Hence, the number of zeroes between the decimal point and the first significant digit after decimal

 = 20 – 1 = 19

(ii)                 Let x = (1/2)1000

    Log x = 1000 log (1/2)

                = 1000 [log 1 – log 2]

                = 1000 [0 – 0.30103]

                = 1000 × - 0.30103

                = - 301.03

                = - 301 – 0.03

                = - 302 + 1 – 0.03

                = - 302 + 0.97

                = 3̅0̅̅2̅.97

Characteristics = 3̅0̅̅2̅

                                Hence, the number of zeroes between the decimal point and the first significant digit after decimal = 302 – 1 = 301

 

(iii)               Let x = 3-6

Log x = log 3-6

                = -6 log 3

                = -6 × 0.47712

                = - 2.86272

                = - 2 – 0.86272

                = -3 + 1 – 0.86272

                = -3 + 0.13728

                = 3̅.13728

Characteristics = 3̅

Hence, the number of zeroes between the decimal point and the first significant digit after decimal

 = 3 – 1 = 2

 

(iv)              Let x = (1/3)100

Log x = log (1/3)100

                = 100 log (1/3)

                = 100 log 3-1

                        = -100 log 3

                = -100 × 0.47712

                = - 47.712

                = -48 + 1 – 0.712

                = -48 + 0.288

                = 4̅8̅.288

Characteristics = 4̅8̅

Hence, the number of zeroes between the decimal point and the first significant digit after decimal

 = 48 – 1 = 47

 

(v)                Let x = (0.0016)20

Log x = log (0.0016)20

                = 20 log (0.0016)

                = 20 [log 16 × 10-4)

                = 20 [log 24 + log 10-4]

                = 20 [4 log 2 + -4 log 10]

                = 20 [4× 0.30103 -4]

                = 20 [1.20412 – 4]

                = 20 × - 2.79588

                = - 55.9176

                = - 55 – 0.9176

                = -56 + 1 – 0.9176

                = -56 + 0.0824

                = 5̅6̅.0824

Characteristics = 5̅6̅

Hence, the number of zeroes between the decimal point and the first significant digit after decimal

 = 56 – 1 = 55

 

(vi)              Let x = 3-7

Log x = log 3-7

                = -7 log 3

                = -7 × 0.47712

                = - 3.33984

                = -3 – 0.33984

                = -4 + 1 – 0.33984

                = - 4 + 0.66016

                = 4̅.66016

Characteristics = 4̅

Hence, the number of zeroes between the decimal point and the first significant digit after decimal

 = 4 – 1 = 3

 

(vii)             Let x = (16.8)-12

Log x = log (16.8)-12

                        = -12 log 16.8

                = -12 [log (168 × 10-1)]

                = - 12 [log 10-1 + log (23×3×7)]

                = -12 [-1 + 3 log 2 + log 3 + log 7]

                = -12 [-1 + 3× 0.30103 + 0.47712 + 0.84510]

                = -12 [-1 + 0.90309 + 0.47712 + 0.84510]

                = -12 × 1.22531

                = - 14.70372

                = -14 – 0.70372

                = -15 + 1 – 0.70372

                = -15 + 0.29628

                = 1̅5̅.29628

Characteristics = 1̅5̅

Hence, the number of zeroes between the decimal point and the first significant digit after decimal

 = 15 – 1 = 14

 

(viii)           Let x =7-4

Log x = log 7-4

                = -4 log 7

                = -4 × 0.84510

                = -3.3804

                = - 3 – 0.3804

                = -4 + 1 – 0.3804

                = -4 + 0.6196

                = 4̅.6196

Characteristics = 4̅

Hence, the number of zeroes between the decimal point and the first significant digit after decimal

                                                = 4 – 1 = 3

(ix)              Let x = 3-21

Log x = log 3-21

                = -21 log 3

                = -21 × 0.47712

                = -10.01952

                = -10 – 0.01952

                = -11 + 1 – 0.01952

                = -11 + 0.98048

                = 1̅̅1̅.98048

Characteristics = 1̅1̅

Hence, the number of zeroes between the decimal point and the first significant digit after decimal

                                        = 11 – 1 = 10

(x)                Let x = 2-10

Log x = log 2-10

                = -10 log 2

                = -10 × 0.30103

                = -3.0103

                = - 3 – 0.0103

                = -4 + 1 – 0.0103

                = -4 + 0.9897

                = 4̅.9897

Characteristics = 4̅

Hence, the number of zeroes between the decimal point and the first significant digit after decimal

= 4 – 1 = 3

 7.       Find the values:

(i)  (7.92)5                   (ii)        (iii) (0.264)1/5

(iv) 

(v ) 

Solution: (i) let x = (7.92)5

                        Log x = log (7.92)5

  Log x = 5 log 7.92

  Log x = 5 ( 0 + 0.89873)

  Log x = 4.49365

  x = Antilog (4.49365)

  = 31162.05

 

(i)                                  let x = 

  Log  x = log       

  Log x =  log (0.00000165)

  Log x =  [ log (1.65 × 10-7]

  Log x =   [ log 1.65 + log 10-7]

  Log x =   [-7 + 1.21748]

  Log x =  × -5.78252

  Log x = - 1.9275

  Log x = -1 – 0.9275

  Log x = -2 + 1 – 0.9275

  Log x = -2 + 0.0725

  Log x = 2̅.0725

  X = Antilog (2̅.0725)

  X = 0.01181          

 

(ii)                           Let x = 

  Log x = log 

  Log x =   log (0.264)

  Log x =   (log 2.64 × 10-1)

  Log x =   ( -1 + 0.42160)

  Log x =   × -0.57840

  Log x = - 0.11568

  Log x = -1 + 1 – 0.11568

  Log x = -1 + 0.88432

  Log x = 1̅.88432

  x =Antilog (1̅.88432)

  x = 0.76616

 

(iii)                                let x =  

  Log x = log  

  Log x =     log  

  Log x =    [ log (625)4 + log (0.32)8 – log 52- log (0.3125)3- log (0.00432)2]

  Log x =    [ 4 log 625 + 8 log (0.32) – 2 log 5 – 3 log (0.3125) – 2 log (0.00432)]

  Log x =   [ 4 × 2.7959 + 8 × (1̅.5051) – 2 × 0.6990 – 3(1̅.4949) – 2(3̅.6355)]

  Log x =    [11.1836 + 8 (-0.4949) – 1.398 – 3(-0.5051) – 2 (-2.3645)]

  Log x =    [11.1836 – 3.9592 – 1.398 + 1.5153 + 4.729]

  Log x =   × 12.0707

  Log x = 2.4142

   x = Antilog 2.4142

  x = 259.5

 

(iv)                             let x =  

 log x = log   

                                 log x =   log 

                                 log x =   [log 125 + log 147 – log 21 – log 32]

                                 log x =    [ log 5+ log (3×72) – log ( 3×7) – log 25]

                                 log x =   [ 3 log 5 + log 3 + log 72 – log 3 – log 7 – 5 log 2]

                                  log x =   [ 3 log 5 + log 7 – 5 log 2]

                                  log x =  [ 3 × 0.6989 + 0.8451 – 5 × 0.30103]
                                
  log x =   [ 2.0967 + 0.8451 – 1.50515]

                                  log x =   × 1.4367

                                  log x = 0.9578

                                Therefore,       x = Antilog (0.9578)

                                                                = 9.076226

 

8.       Show that  = 12.843 (upto three decimal places).

Solution          let x =  

                         log x = log   

                         log x =   log (349388)

                          log x =   (5.5434)

                                        = 1.10868

        Therefore,       x = Antilog (1.10868)

                                        = 12.843

9.       Find the position of 1st significant digit on the right side of the decimal point of the number 

Solution:  let x =  

                  log x = log    

                                        = log 1 – log (16.8)12

                                        = 0 – 12 × log 16.8

                                        = -12 × 1.2253

                                        = - 14.7036

                                        = -15 + 1 – 0.7036

                                        = -15 + 0.2964

                                        = 1̅5̅.2964

         Characteristics= 1̅5̅

                        Therefore, required place = 15

10.       Applying logarithm, find at what rate per cent will  160,000 amount to 1,91,844 in 2 years at compound interest?

Solution:  Here, Principal, P=  160,000

                                        Amount, A =  1, 91, 844

                                        Years, n = 2

                                        Rate percent, r =?

        We know that-

                                        A = P 

                          1,91,844 = 160000  

                           =  

                          =  

                       log  = log 

                         log 47961 – log 40000 = 2 log 

                         4.68089 – 4.60206 = 2 log 

                         0.07883 = 2 log 

                         log   × 0.07883

                         log  = 0.039415

                          = Antilog (0.039415)

                         1 +  = 1.0950

                           = 1.0950 – 1

                           = 0.095

                          r = 9.5

 Therefore, rate of interest = 9.5 %

11.       With the help of logarithm find the number of years in which 216 will become  625 at 16% compound interest.

Solution: Given, Principal P = 216

                        Amount, A = 625

                        Rate of interest, r = 16

                        Years = ?

We know that,

                                        A = P 

                         625 = 216  

                          =  

                         log  = log  

                        log 625 – log 216 = n [ log 116 – log 100]

                         log 54 – log (2×33) = n[ 2.0645 – log 102]

                         4 log 5 – log 23 – log 33 = n [2.0645 - 2×log10]

                         × 0.69897 –3 log 2 – 3 log 3= n [2.0645 - 2]

                         2.7959 –3×0.30103 - 3×0.47712= 0.0645 n

                         2.7959 – 0.90309 – 1.43136 = 0.0645 n

                         0.46145 = 0.0645 n

                         n = 7.148

                        Therefore, required year = 7.148

12.       What will be the interest of  100000 in 3 years at 8% compound interest.

Solution:  Here, P= 100000

                             n = 3

                             r= 8

                        Compound interest = ?

For Compound interest,

                                        A = P 

                                            = 100000  

                                        = 100000  

                               A      = 100000 

                         log A = log 10+ 3[log 27 – log 25]

                         log A = 5 log 10 + 3 log 33 – 3 log 52

                         log A = 5 log 5 + 5 log 2 + 9 log 3 – 6 log 5

                        log A = 5 × 0.69897 + 5 × 0.30103 + 9× 0.47712 - 6× 0.69897

                         log A = 3.49485 + 1.50515 + 4.29408 – 4.19382

                        log A = 5.10026

                         A = Antilog 5.10026

                                        = 125971.20

Required CI = 125971.20 – 100000

                         25971.20

No comments:

Post a Comment

ADRE GRADE 4

Grade IV Level ADRE Question Answer 1.  Who is the first athlete from Assam to win a medal in the Summer Olympics ?  (A) Hima Das (B) Lovlin...